Note

Expressions for the Behavior of a Fourier Transform near Its Singularities*

1. Introduction

Let $F(y)$ denote the integral

$$
\begin{equation*}
F(y)=\int_{0}^{\infty} e^{-i u y} f(u) d u \tag{1}
\end{equation*}
$$

where y is a real variable. Here we shall be concerned with the behavior of $F(y)$ near its singularities, i.e., the values of y at which $F(y)$ or some of its derivatives are discontinuous. The general nature of our results has been known for some years (Widder [1], Doetsch [2]). The aim of the present note is to put this material in a form that is of help in the calculation of integrals of type (1).

Wc shall consider only a simple but frequently occurring kind of singularity, namely, the kind that appears in $F(y)$ when the asymptotic expansion of $f(u)$, as $u \rightarrow \infty$, is the sum of components of the form $A u^{-v} \exp \left[i u y_{1}\right]$. More general results are available (see Handelsman and Lew [3, 4], Bleistein et al. [5]).
2. Behavior of $F(y)$ When the Asymptotic Expansion of $f(u)$ Consists of a Single Series
In this case we have the following Abelian-type theorem.
Theorem. Let $f(u)$ in the integral (1) have the asymptotic expansion

$$
\begin{equation*}
f(u) \sim \exp \left[i u y_{1}\right] \sum_{m=1}^{\infty} A_{m} u^{-v_{m}}, \quad u \rightarrow \infty \tag{2}
\end{equation*}
$$

where $0<v_{1}<v_{2}<\cdots v_{m}<\cdots$ and $v_{m} \rightarrow \infty$ as $m \rightarrow \infty$. Then the function $F(y)$ defined by (1) has a singularity at $y=y_{1}$. For any positive integer $M, F(y)$ can be written as

$$
\begin{equation*}
F(y)=\sum_{m=1}^{M} \phi_{m}\left(y-y_{1}\right)+\psi_{M}(y) \tag{3}
\end{equation*}
$$

[^0]where
(i) $\psi_{M}(y)$ and its first N derivatives are continuous for all real values of y, N being defined by
\[

$$
\begin{equation*}
N+1<v_{M+1} \leqslant N+2 \tag{4}
\end{equation*}
$$

\]

(ii) the functions $\phi_{m}\left(y-y_{1}\right)$ are defined by

$$
\begin{equation*}
\phi_{m}\left(y-y_{1}\right)=A_{m}\left[i\left(y-y_{1}\right)\right]^{v_{m}-1} \pi /\left[\Gamma\left(v_{m}\right) \sin \pi v_{m}\right] \tag{5}
\end{equation*}
$$

when v_{m} is not an integer, and by

$$
\begin{equation*}
\phi_{m}\left(y-y_{1}\right)=A_{m}(-)^{n}\left[i\left(y-y_{1}\right)\right]^{n-1} \ln \left[i\left(y-y_{1}\right)\right] /(n-1)! \tag{6}
\end{equation*}
$$

when v_{m} is equal to the integer $n \geqslant 1$. In (5) and (6), $\arg \left[i\left(y-y_{1}\right)\right]$ is equal to $\pi / 2$ when $y>y_{1}$ and to $-\pi / 2$ when $y<y_{1}$.

The theorem can be proved by (i) writing $F(y)$ as the sum of an integral with limits $(0,1)$ and one with limits ($1, \infty$), (ii) adding and subtracting N terms of (2) to the integrand of the second integral, then (iii) using properties of the incomplete gamma function and exponential integral.
3. Behavior of $F(y)$ When the Asymptotic Expansion of $f(u)$ Consists of the Sum of Several Series
In this case $F(y)$ is irregular at several values of y corresponding to y_{1} (these singularities will be referred to as the " y_{1} 's"). Corresponding to each y_{1} there is a set of $\phi_{m}\left(y-y_{1}\right)$'s. In the neighborhood of a particular $y_{1}, F(y)$ can still be expressed in form (3) but now, although $\psi_{m}(y)$ and its first N derivatives are continuous at the particular y_{1}, they may not be continuous at the remaining $y_{1}, \mathrm{~s}$.

Thus, in general, corresponding to a term $A u^{-v} \exp \left\lceil i u y_{1}\right\rceil$ in the asymptotic expansion of $f(u)$ there is an irregular portion of $F(y)$, namely, the function $\phi\left(y-y_{1}\right)$ given by

$$
\begin{align*}
& A \pi\left[i\left(y-y_{1}\right)\right]^{v-1} /[\Gamma(v) \sin \pi v], \quad v>0 \text { but } \neq 1,2,3, \ldots, \tag{7}\\
& A(-)^{n}\left[i\left(y-y_{1}\right)\right]^{n-1} \ln \left[i\left(y-y_{1}\right)\right] /(n-1)!, \quad v=n, n=1,2,3 \ldots, \tag{8}\\
& A \pi \delta\left(y-y_{1}\right)+A\left[i\left(y-y_{1}\right)\right]^{-1}, \quad v=0, \tag{9}
\end{align*}
$$

where $\delta\left(y-y_{1}\right)$ denotes the unit impulse function. Also $\arg \left[i\left(y-y_{1}\right)\right]$ is $\pi / 2$ when $y>y_{1}$ and $-\pi / 2 y<y_{1}$. Therefore we have for $y>y_{1}$

$$
\begin{align*}
i\left(y-y_{1}\right) & =i\left|y-y_{1}\right| \tag{10}\\
\ln \left[i\left(y-y_{1}\right)\right] & =\ln \left|y-y_{1}\right|+i \pi / 2
\end{align*}
$$

and for $y<y_{1}$,

$$
\begin{align*}
i(y-y) & =i^{-1}\left|y-y_{1}\right| \tag{11}\\
\ln \left[i\left(y-y_{1}\right)\right] & =\ln \left|y-y_{1}\right|-i \pi / 2
\end{align*}
$$

Powers of i are interpreted as powers of $\exp (i \pi / 2)$.

4. Examples

The following examples show how our results can be used to obtain information regarding the behavior of $F(y)$ near its singularities when $f(u)$ is asymptotically equal to the sum of terms of the form $A u^{-v} \exp \left[i u y_{1}\right]$.
(a) $f(u)=(1+u)^{-1 / 2}$. When $u \rightarrow \infty$ the behavior of $f(u)$ is given by the binomial expansion

$$
\begin{equation*}
f(u)=u^{-1 / 2}-\frac{1}{2} u^{-3 / 2}+\frac{3}{8} u^{-5 / 2}-\cdots, \quad u>1 . \tag{12}
\end{equation*}
$$

and comparison with the asymptotic series (2) for $f(u)$ gives $y_{1}=0 ; A_{1}=1, v_{1}=\frac{1}{2}$; $A_{2}=-\frac{1}{2}, v_{2}=\frac{3}{2} ; A_{3}=\frac{3}{8}, v_{3}=\frac{5}{2} ; \ldots$.
$F(y)$ has a singularity at $y=0$ because $y_{1}=0$. Putting $y_{1}=0$ in (7) and substituting A_{1}, v_{1} and A_{2}, v_{2} for A, v gives the first two terms in the irregular part of $F(y)$

$$
\begin{align*}
& \phi_{1}(y)=(1) \pi[i y]^{-1 / 2} / \Gamma\left(\frac{1}{2}\right)=(\pi /|y|)^{1 / 2} i^{\mp 1 / 2} \\
& \phi_{2}(y)-\left(-\frac{1}{2}\right) \pi[i y]^{1 / 2} / \Gamma\left(\frac{3}{2}\right)(-1)=(\pi|y|)^{1 / 2} i^{ \pm 1 / 2} \tag{13}
\end{align*}
$$

where the upper sign in the exponents of i refers to $y>0$ and the lower sign to $y<0$. Setting $M=2$ in (3) shows that

$$
\begin{align*}
F(y) & =\int_{0}^{\infty} e^{-i u y}(1+u)^{-1 / 2} d u \\
& =\phi_{1}(y)+\phi_{2}(y)+\psi_{2}(y) \\
& \left.=\left.(\pi / 2)^{1 / 2}|(1 \mp i)| y\right|^{-1 / 2}+(1 \pm i)|y|^{1 / 2}\right]+\psi_{2}(y) \tag{14}
\end{align*}
$$

where we have used $i^{1 / 2}=\exp (i \pi / 4)=(1+i) / 2^{1 / 2}$. When we put $M=2$ in (4) and note that $\nu_{3}=\frac{5}{2}$ we see that $N=1$. Therefore $\psi_{2}(y)$ and its first derivative are continuous at $y=0$.

In order to obtain the actual value of $\psi_{2}(y)$ at $y=0$ further investigation is required. Thus, subtracting the leading term in the asymptotic series for $f(u)$ from the integrand in (14) and setting $y=0$ give

$$
\psi_{2}(0)=\int_{0}^{\infty}\left[(1+u)^{-1 / 2}-u^{-1 / 2}\right] d u=-2
$$

For this example $F(y)$ can be expressed in terms of Fresnel integrals.
(b) $f(u)=\sin u / u$. Here $F(y)$ has two singularities in contrast to example (a), where there was only one. The "asymptotic expansion" of $f(u)$ consists of two "series,"

$$
\begin{equation*}
f(u)=e^{i u}\left(\frac{1}{2 i u}+0+0+\cdots\right)+e^{-i u}\left(\frac{-1}{2 i u}+0+0+\cdots\right) \tag{15}
\end{equation*}
$$

and comparison with (2) shows that one of the y_{1} 's is +1 and the other is -1 . Therefore $F(y)$ has singularities at $y=+1$ and $y=-1$. At $y=+1$ we have $A_{1}=1 /(2 i), v_{1}=1$; and (8) with $n=1$ and $y_{1}=1$ gives

$$
\begin{equation*}
\phi_{1}(y-1)=\frac{i}{2} \ln |y-1| \mp \frac{\pi}{4} \tag{16}
\end{equation*}
$$

where the upper (-) sign refers to $y>1$ and the lower $(+)$ sign to $-1<y<1$.
Therefore near $y=1$

$$
\begin{align*}
F(y) & =\int_{0}^{\infty} e^{-i y u} \sin u d u / u \\
& =\frac{i}{2} \ln |y-1| \mp \frac{\pi}{4}+\left[\psi_{\infty}(y)\right]_{1}, \tag{17}
\end{align*}
$$

where $\left[\psi_{\infty}(y)\right]_{1}$ denotes $\psi_{M}(y)$ for $M=\infty$ and y in the interval $-1<y<\infty$. The function $\left[\psi_{\infty}(y)\right]_{1}$ and all of its derivatives are continuous at $y=1$. From (17) and the known value

$$
\begin{align*}
F(y) & =\frac{i}{2} \ln \left|\frac{y-1}{y+1}\right|, & & |y|>1 \tag{18}\\
& =\frac{i}{2} \ln \left|\frac{y-1}{y+1}\right|+\frac{\pi}{2}, & & |y|<1
\end{align*}
$$

it can be shown that

$$
\begin{equation*}
\left[\psi_{\infty}(y)\right]_{1}=\frac{\pi}{4}-\frac{i}{2} \ln (y+1), \quad-1<y<\infty \tag{19}
\end{equation*}
$$

References

1. D. V. Widder, "The Laplace Transform," pp. 180-183, Princeton Univ. Press, Princeton, N.J., 1946.
2. G. Doetsch, "Handbuch der Laplace-Transformation," Vol. I, pp. 455-460, Vol. II, pp. 97-100. Birkhaüser, Basel, 1950, 1955.
3. R. A. Handelsman and J. S. Lew, Asymptotic expansions of Laplace transforms near the origin. SIAM J. Math. Anal. 1 (1970), 118-130.
4. R. A. Handelsman and J. S. Lew, Asymptotic expansion of a class of integral transforms with algebraically dominated kernels, J. Math. Anal. Appl. 35 (1971), 405-433.
5. N. Bleistein, R. A. Handelsman, and J. S. Lew, Functions whose Fourier transforms decay at infinity; An extension of the Riemann-Lebesgue Lemma, SIAM J. Math. Anal. 3 (1972), 485-495.

Received: March 1, 1978; Revised: October 31, 1979
Robert Lugannani and Stephen Rice
Department of Electrical Engineering and Computer Science University of California, San Diego

La Jolla, California 92093

[^0]: * This research was sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant AFOSR 74-2689.

